If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+22=34
We move all terms to the left:
2x^2+22-(34)=0
We add all the numbers together, and all the variables
2x^2-12=0
a = 2; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·2·(-12)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*2}=\frac{0-4\sqrt{6}}{4} =-\frac{4\sqrt{6}}{4} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*2}=\frac{0+4\sqrt{6}}{4} =\frac{4\sqrt{6}}{4} =\sqrt{6} $
| 7x+2/5=2x-5/7 | | 2/3x-5/6=1/2x-4 | | x/(-5)=-7 | | (2x+1)+(3x-19)=180 | | (2x+1)(3x-19)=180 | | x(1.33)=0.19 | | 9^(x-2)=5 | | 5/9x-1/3=3-1/9x | | -0.9x=-1.44 | | 3(5)+2y=17 | | (x+30)+(x-5)+1.4x+x=360 | | -2(y+7)=3y-39 | | 2(x-1)=1/2(4x+6)=5 | | 33/5x+2=1/2x=3 | | 15-(2x+7)=3(x-2)-3 | | -16n^2=64 | | ⅕+b/2=19 | | 5(2x-3)=21 | | 3x+17-5x=5-2x-2 | | (x+40)(x-40)=0 | | 48-(2c+3)=4(1c+6)+6 | | 7y-5+108=180 | | 1/7x-2=3/14x+1 | | R2-4r+4=0 | | 3(3x-2)=6x-1 | | -1=-2(x+2) | | 5+3x=-22,x= | | 5b–2=2b+7 | | {h}6-1=36h−1=3 | | 9/15n^2+10/7n=0 | | 2(y-2)-9=-3(-7y+3)-9Y | | -6g=-4 |